
Dynamics-Guided Diffusion Model
for Robot Manipulator Design

Xiaomeng Xu1, Huy Ha1,2, Shuran Song1,2

1Stanford University, 2Columbia University
https://dgdm-robot.github.io

a) Target Object

2D
3D

c) Open-loop Policy

Real World

before after

Shift UpUnseen Geometry

b) Manipulation Tasks

Rotate Clockwise ConvergenceShift Left

Fig. 1: Task-specific Designs without Task-specific Training. Given input objects (a), our algorithm learns to generate diverse manipulator
geometries tailored to unseen manipulation tasks (b), which can be deployed with an open-loop motion (c) (i.e., closing in parallel). Our
framework generates designs for new tasks and objects in seconds, unlocking rapid design iteration cycles.

Abstract—We present Dynamics-Guided Diffusion Model
(DGDM), a data-driven framework for generating manipulator
geometry designs for a given manipulation task. Instead of
training different design models for each task, our approach
employs a learned dynamics network shared across tasks. For a
new manipulation task, we first decompose it into a collection
of individual motion targets which we call target interaction
profile, where each individual motion can be modeled by the
shared dynamics network. The design objective constructed from
the target and predicted interaction profiles provides a gradient
to guide the refinement of finger geometry for the task. This
refinement process is executed as a classifier-guided diffusion
process, where the design objective acts as the classifier guidance.
We evaluate our framework on various manipulation tasks,
under the sensor-less setting using only an open-loop parallel
jaw motion. Our generated designs outperform optimization-
based and unguided diffusion baselines relatively by 31.5% and
45.3% on average manipulation success rate. With the ability
to generate a design within 0.8 seconds, our framework could
facilitate rapid design iteration and enhance the adoption of data-
driven approaches for robotic mechanism design.

I. INTRODUCTION

Mechanical intelligence refers to the utilization of mechan-
ical design to solve tasks and adapt to new challenges [36]. A
substantial body of evidence in both natural [5] and artificial
systems [39] has demonstrated that well-customized embod-
iments can significantly simplify an agent’s perception and
control, thereby enhancing overall robustness [42].

Despite its advantages, mechanical intelligence in robotics
has recently been overshadowed by the rapid development of

its counterpart, “action intelligence”, where the agent focuses
on inferring different actions for different tasks, assuming
a fixed mechanical embodiment design. Namely, recent ad-
vancements in data-driven approaches [8, 33, 49, 69] have
demonstrated action intelligence that can be directly applied
to novel tasks and environments [14, 28]. In contrast, learning
for mechanical design has largely focused on single task
optimization [20, 60] or heavily engineered objective functions
that could not be reused for new design task [7, 25, 34,
37, 48, 63]. In practice, this means automating task-specific
design typically involves recollecting training data for every
scenario, which is too expensive to be practical. Therefore, we
investigate the following question:

Can we automate task-specific mechanical design
without task-specific training?

We introduce Dynamics-Guided Diffusion Model, a
framework that generates manipulator geometry designs in
seconds, with no task-specific training and no perception - only
a parallel jaw closing motion. From tasks as simple as object
translation to complex tasks requiring sequential interactions
such as pose convergence (Fig. 2), our framework’s designs
achieve drastically different manipulation goals with geometry
changes that are highly adapted to the task and object. To
enable task-agnostic pretraining for task-specific designs, our
framework consists of two key technical contributions, each
answering a key research question:
• How to represent the task space? The task repre-

https://dgdm-robot.github.io

Target Object

Task Objective

Dynamics-
Guided

Diffusion
Model

Right Finger

Left Finger

Sensorless Deployment

θ = θtarget

θ = 175°

 θ = 120°

θ = θtarget

θ

θ = 90°

θ = θtarget

θ

θ = 60°

θ = θtarget

θ

be
fo

re
af

te
r

Task & Object Conditioned Design

θtarget

Fig. 2: The Convergence Task. Throughout this paper, we use convergence as an illustrative example. The goal of convergence is to design
fingers that always reorient a target object to a specified orientation θtarget when closing the gripper in parallel. In industrial settings, this task
is useful because it funnels the objects from arbitrary poses to a small set of θtarget, thereby simplifying downstream perception/planning.
Despite its utility, designing for convergence can be highly counter-intuitive. An experienced engineer may take many design cycles to
develop a reasonable design for just one object and must repeat this process for each new object. In contrast, our framework generates a
functional design for a novel object within seconds, all without any prior training specific to this task.

sentation has to be expressive enough to capture the
wide range of manipulation tasks while being compact
enough to be readily learned from data. Our key insight
is that many manipulation tasks can be decomposed into
a collection of individual motion targets that specify how
each object should move under each initial pose. We call
the collection of individual motions interaction profile.
While the final composed objective is specific to the task,
each of the individual motions can be modeled by a
generic dynamics model that is reusable across tasks.

• How to facilitate efficient and robust search? As the
design space grows, the distribution of good designs often
becomes multi-modal, and the task of generating promis-
ing yet diverse design candidates becomes challenging.
To address this issue, we propose a dynamics-guided
diffusion model. First, with the dynamics network, we
can infer the current interaction profile for an object and
the current fingers. The design objective constructed by
comparing the current with the target (i.e., task-specific)
interaction profiles gives us a gradient on how to update
the finger. This guidance is incorporated into diffusion
denoising steps similarly to classifier guidance [11].
Tuning the guidance scale allows users to trade off the
exploration of diverse candidates and the exploitation of
the most promising modes.

We demonstrate results on both 2D and 3D objects with
a variety of manipulation objectives ranging from primitive
to complex and single- to multi-object objectives, all under
a sensor-less setting, where the initial pose of the object
is unknown. Experiments in simulation and the real world
demonstrate that designs generated by our approach achieve
high task performance, with 31.5% and 45.3% relative success
rate improvements compared to optimization and unguided
diffusion generation results.

II. RELATED WORK

A. Manual End-effector Design

Domain-specific end-effector designs have a long history in
robotics, which expands the system’s capabilities while simpli-
fying perception and control. The diverse array of manipulator
designs we see today (serial [2, 47], parallel [18], multi-
finger [19, 59], platform-based [15, 38], dexterous [29, 35],
underactuated [6, 9, 10, 24, 36]) typically start as the re-
sult of many trail-and-error iterations by expert engineers.
Though many analytical design methods have been devel-
oped [3, 12, 30, 31, 44, 55, 65], heavy manual efforts are
still needed to discover optimal and occasionally counter-
intuitive designs in practice, which significantly hinders the
development of designs for new applications. For instance,
for complex manipulation tasks such as convergence (Fig. 2),
previous works only deal with 2D planar polygons, utilizing
manual or analytical designs of grasping policy [1, 17] or
gripper geometry [67].

B. Analytical Optimization for Automatic End-effector Design

To alleviate the manual efforts, previous works have ex-
plored optimization approaches to manipulator design. Though
non-linear optimization is possible [57], this approach typi-
cally requires careful task-specific formulation of objectives
and constraints. Therefore, first-order optimization of mor-
phology only [62] or both morphology and control [32, 57, 63]
is more common, but requires careful initialization (task-
specific parameterization [62], cage-based deformation [34,
63], or heuristics [32]). Further, tasks involving complex
contact modes, such as the ones we consider, are known
to yield biased and high variance gradients in differentiable
simulators [34, 56]. Importantly, all manual efforts involved
in setting up an optimization problem are typically not trans-
ferrable to new tasks or objects, and thus require a significant
amount of manual labor for each new task.

C. Data-driven Robot Hardware Design

Fundamentally, data-driven approaches offer an improve-
ment over optimization-based approaches by facilitating the
transfer of knowledge from one scenario to another, thus
reducing costs at inference and optimization stages. A com-
mon approach to leveraging data is to distill the evaluation
process into a value network, which takes the embodiment
parameterization as input and outputs the design’s task-specific
performance. This value network can then be used to guide
a search/optimization procedure, which is often more effi-
cient than evaluating the design in simulation. This direction
has been explored in the realm of gripper design [20] and
locomotion [64, 68], to guide optimization [20, 26, 60] or
graph search [25, 61, 64, 68]. Another common approach
is to learn a generative model of the design space, which
effectively compresses the design space into a low-dimensional
continuous latent space. This makes offline optimization via
gradient-descent [20, 26] or online optimization via trial-and-
error rollouts of random latent-space samples [20, 25, 60]
significantly more efficient. Finally, when co-optimizing mor-
phology and control, leverage control experience from prior
embodiment evaluations can significantly improve the effi-
ciency and accuracy of new embodiment evaluations [7, 48].

All these data-driven approaches require task-specific data,
yet only work well when provided with enough data for
robust generalization. We posit that this requirement on a large
amount of task-specific data has hindered the mass adoption of
data-driven approaches to robot hardware design. In this work,
we aim at eliminating the requirement on task-specific data
when designing manipulators for a new task, by leveraging
dynamics as the shared structure between manipulation tasks.

III. APPROACH

A. Interaction Profiles as Task Specification

Compact, Expressive Task Representation. Requirements
for a manipulation system are incredibly diverse, ranging in
what initial poses are allowed, what objects are considered,
and what the desired effects are. Parameterizing the space
of manipulation task objectives call for, first and foremost,
a representation expressive enough to capture tasks ranging
from shifting objects upwards to temporally-extended sequen-
tial tasks such as pose convergence (Fig. 2). Moreover, this
representation should be compact - containing only the nec-
essary information to capture how the object interacts with the
finger, such that it is efficient to evaluate/learn. For instance,
modeling the detailed physics states such as in differentiable
simulators [27, 34, 63] is expressive, but forward integrating
the dynamics over the time horizon for every finger evaluation
is expensive.

Interaction Profiles. Our key insight is that many manipu-
lation tasks can be decomposed into a collection of individual
motion targets that specify how each object should move under
each initial pose. By combining motions from all objects and
initial poses under consideration, we get a complete profile
of how the current manipulator will interact with the target

objects - the “interaction profile”. Below, we introduce the
notation and demonstrate how interaction profiles can be used
to specify manipulation tasks.

Denote by o and m the object shape and manipulator shape.
When o is at the initial planar pose p = (θ ,x,y), closing m
once will change o’s pose by ∆p=(∆θ ,∆x,∆y), dictated by the
manipulator-object interaction dynamics D. We refer to scalar-
valued functions f defined on top of ∆p as motion objectives
and aggregate these motion objectives among all initial poses
p and objects o to get the design objective F .

Example: Multi-object Shift Up
Suppose we wish to design a manipulator that shifts a set

of objects upwards. We can define each motion objective
as

f (o,m, p) = ∆y(o,m, p) (1)

where ∆y is shorthand for the y-translation component
of ∆p. The design objective for this task can then be
aggregated from (1) as

F(m) = ∑
o

∑
p

f (o,m, p) (2)

By its design, interaction profiles naturally scale to varying
ranges of initial poses and objects. Thus, from the previous
example, using a larger set of initial poses and objects will
yield an objective that is more robust to different initial poses
and tailored to more objects. Since each motion objective is
conditioned on p, this approach also allows for objectives
dependent on initial poses, as we’ll illustrate in the example
below.

Example: Pose Convergence
The goal of pose convergence is to rotate an object to a tar-
get orientation θtarget (Fig. 2). A well-designed convergence
manipulator can funnel a wide range of initial configura-
tions into a single orientation - the target orientation θtarget -
with no perception, no closed-loop control, only a parallel
gripper closing motion on repeat. How the object should
rotate depends on the initial orientation θ relative to the
target orientation θtarget:

f (o,m, p) =

{
∆θ(o,m, p) if θ ∈ [θtarget−π,θtarget]

−∆θ(o,m, p) if θ ∈ [θtarget,θtarget +π]
(3)

The objective for this task can then be aggregated from (3)
analogously to (2).

If ∇mF can be efficiently computed, then we can use this
gradient information to find a pair of fingers m that achieves
the task. To achieve this, we propose to represent D as a neural
network and train it using data generated from interactions
between random finger-object pairs. Subsequent sections will
delve into the learning of dynamics (§ III-B) and the use of
diffusion processes for guiding manipulator design (§ III-C).

B. Dynamics Network

The dynamics network D : (o,m, p) 7→ ∆p aims to learn
a general model of how a random distribution of fingers
interacts with a distribution of objects. Importantly, it provides
gradients of the design objective with respect to the finger
representation. The following paragraphs describe the details
of the dynamics network’s training procedure.

Shape Representation. We choose cubic Bézier curves
and surfaces as the shape representation for the manipulator
geometry m, for their flexibility and ubiquity in parameterizing
shapes [4, 16]. Control points are grid sampled along the
length (and height in 3D) of the finger while the remaining
y-coordinate of the control points determines its protrusion
outwards/inwards. We represent object shape o as a point
cloud by surface sampling the object mesh. For 2D objects,
we sample 100 2D points from their contour surfaces. For 3D
objects, we sample 512 3D points from all surfaces.

Motion Representation. We represent object motion un-
der interaction as a three-dimensional vector consisting of
delta rotation along the z-axis, delta translation along the
x-axis, and delta translation along the y-axis, denoted as
∆p = (∆θ ,∆x,∆y).

Network Architecture. In the 2D manipulation case, we
use an MLP as the network architecture. First, we transform
sampled object initial poses p with a high-frequency positional
encoding - a trick typically used to combat over smoothing
of neural networks [40]. Then, o and m are passed through
separate 2-layer multi-layer perceptrons (MLPs) with 256
hidden dimensions, before being concatenated together with
the high-frequency pose embedding. Finally, the resulting
embedding is passed through an 8-layer MLP with 256 hidden
dimensions to get the predicted object motion ∆p. In 3D, we
use a PointNet++ [43] encoder to encode object geometry,
whereas all other parts of the architecture are shared between
2D and 3D tasks.

Training Data Generation. Since our dynamics network
training only requires task-agnostic data, its data generation
happens once for all tasks. We sample random object and
manipulator pairs, load them into MuJoCo [58] simulation
environment, and measure ∆p after a single parallel jaw
closing interaction. For the 2D case, we generate 321 planar
object shapes by first extracting contours of 2D icon images
from the Icons-50 dataset [21], and then extruding it to
a planar shape. In the 3D setting, we select 164 objects
from Google’s Scanned Objects Dataset [13, 66], filtering out
objects whose scales are out of bound or tilt over during
interaction. We randomly sample 1024 manipulator geometry
parameters m from a uniform distribution. For each object-
fingers pair, we grid sample 360 initial orientations and 5×5
initial positions, then run forward simulations to get delta
object poses after a single gripper close. In total, we use
321×1024×360×25 data points for training the 2D dynamics
network and 164×1024×360×25 data points for training the
3D dynamics network.

Design Objective Gradient Evaluation. To design manipu-

D
yn

am
ic

s
M

od
el

current

gradients

w.r.t. control points

objective

target

In
te

ra
ct

io
n

Pr
of

ile

Diffusion Model

Sampled Poses

mk-1

mk

θ

Δ

θ

+

+

-
θ

target

repeat K iterations

m
K

G
au

ss
ia

n
N

oi
se

Fi
na

lF
in

ge
rs

m
0

Target Object Task Objective

Fig. 3: Dynamics-Guided Diffusion Model. Our approach generates
finger shapes given a target object and task, specified as a target
interaction profile (§ III-A) describing how the object should move
under different initial configurations. This target can be compared
with the dynamics network’s prediction of the current interaction
profile, which is used to construct a differentiable objective (§ III-B).
Gradients of the objective are then used to iteratively guide the reverse
denoising process of a manipulator shape diffusion model (§ III-C).
By averaging gradients across more sampled poses and target objects,
our framework can generate fingers that are robust to a wider range
of initial poses and tailored to more objects.

lators that are generalizable to more initial poses p and objects
o, the design objective F (2) can be evaluated for a wider range
of poses and objects. Concretely, we can grid-sample p’s and
a set of o’s and evaluate each motion objective f in parallel
along the batch dimension. The design objective gradient ∇mF
is attained by aggregating the gradients along the pose/object
batch dimension. For each new design, evaluating ∇mF takes
0.16 seconds on average, which makes it efficient to run in
the inner loop of iterative design procedures. In this project,
we grid-sample 360 orientations and 5×5 positions, getting a
360×5×5 dimensional motion profile.

Modelling Interactions instead of Modelling Contacts.
Differentiable simulators [27, 34, 54, 60, 63] are another
popular choice for providing ∇mF , but suffer from two ma-
jor limitations. First, soft contact models, such as penalty-
based methods used by Xu et al., are known to yield biased
and high-variance gradients [34, 56]. Further, such gradients
need to be computed for each simulation timestep, which
is computationally expensive for long-horizon interactions.
Instead of modeling individual contacts as in differentiable
simulators, our dynamics network learns to capture the tem-
porally extended finger-object interaction. This data-driven
approach can be trained on physically accurate simulated
data, avoiding the limitations associated with soft contacts.
Moreover, our dynamics network exhibits flexibility by seam-
lessly generalizing to novel objects and tasks at test time,
allowing for the construction of objectives without extra data
generation/training.

C. Dynamics-Guided Diffusion Model

Given design objective gradients from D (§ III-B), the
obvious approach is to perform gradient descent on the finger
geometry [20, 32, 34, 57, 63]. However, the distribution of
good designs are often multi-modal, which means gradient
descent approaches quickly get stuck in local minima. Instead,
to efficiently navigate through the large and multi-modal
design space, we extend classifier guidance [11], an iterative
diffusion model sampling approach that enables a balance
between multi-modal diversity and task-specific guidance.

Diffusion Model. Diffusion models [23, 50] are a class of
probabilistic generative models that generate samples from an
underlying distribution through iterative denosing. A diffusion
model εθ (mk) predicts the noise added to a sample [23], which
is trained by first adding noise ε to m0 to produce noised
sample mk, and then apply a mean-squared error loss between
the ground truth noise and predicted noise ||εθ (mk)− ε||2.
To generate samples from a diffusion model, we start with
a Gaussian noise mK and gradually predict less-noisy samples
mK−1,mK−2, ..., until final sample m0. The process involves
repeatedly predicting mk−1 from mk, which is the reverse
noising process of modeling the distribution pθ (mk−1|mk).
Specifically, we employ Denoising Diffusion Implicit Models
(DDIMs) [51] as the sampling method.

We sample manipulator shape parameters m from a uniform
distribution and train a diffusion model on this distribution.
The diffusion model εθ (mk) with 1D UNet architecture [46]
predicts noise added to a sample mk. We use DDIM for
diffusion sampling process pθ (mk−1|mk) with 15 training
denoising iterations and 5 inference iterations, and the Square
Cosine noise scheduler [41].

Background on Classifier Guidance. Many techniques are
developed to condition diffusion model on certain inputs or
guide the reverse diffusion process with priors, such as con-
catenation, cross-attention [45], classifier-free guidance [22],
etc. Among these approaches, classifier guidance [11] can
guide the reverse noising process towards desired samples
with an unconditional diffusion model. It requires a classifier
pφ (l|mk), where mk is the sample, l is the class label, and φ is
the classification network. To condition the sampling process
on label l, each reverse noising transition is:

pθ ,φ (mk|mk+1, l) = Zpθ (mk|mk+1)pφ (l|mk) (4)

where Z is a normalizing constant. Classifier guidance can be
applied to DDIM sampling method. Leveraging the connec-
tion between diffusion models and score matching proposed
by [52, 53], a score function for p(mk) can be derived from
the diffusion model:

∇mk log pθ (mk) =−
1√

1− ᾱk
εθ (mk) (5)

where αk := 1− βk,βk is the variance of Gaussian noise
added to samples at denoising step k, and ᾱk := ∏

k
s=1 αs. The

Algorithm 1 Dynamics guided DDIM sampling, given a
diffusion model εθ (mk), design objective F(mk) constructed
from dynamics network, and gradient scale s.

Input: design objective F(·), gradient scale s
mK ← sample from N (0,I)
for all k from K to 1 do

ε̂ ← εθ (mk)− s
√

1− ᾱk∇F(mk)

mk−1←
√

ᾱk−1

(
mk−
√

1−ᾱk ε̂√
ᾱk

)
+
√

1− ᾱk−1ε̂

end for
return m0

score function for pθ (mk)pφ (l|mk) is:

∇mk log(pθ (mk)pφ (l|mk)) = ∇mk log pθ (mk)+∇mk log pφ (l|mk)

=− 1√
1− ᾱk

εθ (mk)+∇mk log pφ (l|mk)

(6)

A new noise prediction can be defined as:

ε̂(mk) := εθ (mk)−
√

1− ᾱk∇mk log pφ (l|mk) (7)

Then DDIM can be performed with the modified noise pre-
diction for conditioned sampling.

Dynamics Guidance & the Effects of Guidance Scaling.
To guide the design generation towards manipulation design
objectives, we extend classifier guidance to use interaction
profiles instead, which we term dynamics guidance. Con-
cretely, we replace classifier gradients with ∇mk F(mk) to
guide the DDIM sampling process (Algo. 1). By extending
classifier guidance, we not only enable guiding unconditional
diffusion models with task-specific gradients, but also inherit
an elegant way to trade off diversity and performance. Since
s∇m log p(l|m)=∇m log 1

Z p(l|m)s, where s is the gradient scale
and Z is an constant, increasing s has the effect of sharp-
ening the sampling distribution towards p(l|m)s. Dhariwal
and Nichol showed that when s is larger the distribution
becomes sharper and generated samples have higher fidelity,
while smaller scale leads to more diverse samples. We observe
the similar effect of different gradient scales [11] from our
generated results, as shown in Fig. 5.

IV. EVALUATION

We design experiments and a suite of manipulation tasks,
aimed at answering the following questions:

1) Does our approach design effective manipulators cus-
tomized for a range of unseen tasks and 2D/3D objects?

2) Does dynamics-guided diffusion generation provide bet-
ter performance than gradient descent optimization? What
are the design strategies the algorithm learns?

3) How does different conditioning (e.g., multiple objects)
impact the final design?

4) How do designs from our approach transfer to real
hardware?

Manipulation Tasks & Metrics. We categorize our suite
into two difficulty levels.

Primitive Complex

up do
w

n

le
ft

ri
gh

t

cl
oc

k

co
un

te
r

ro
ta

te

cl
oc

ku
p

cl
oc

kl
ef

t

co
nv

er
ge

2D
Unguided 56.8 82.1 82.9 80.4 46.9 58.5 74.0 36.4 36.9 61.7°

Opt. 79.5 53.3 81.3 94.0 48.8 73.2 78.9 29.3 49.4 73.7°
DGDM 88.2 92.0 96.7 97.7 60.8 72.0 79.3 62.8 63.7 83°

3D
Unguided 43.0 43.8 80.4 87.9 41.2 33.5 64.2 30.3 33.1 63.6°

Opt. 47.4 66.3 86.3 88.1 59.1 52.0 66.9 29.2 37.7 60°
DGDM 81.5 75.1 95.1 97.2 69.9 65.0 83.0 57.1 58.2 72.5°

TABLE I: Single Object Evaluation. We evaluate on primitive task
objectives including shift up, shift down, shift left, shift left, rotate
clockwise, rotate counterclockwise, and complex objectives including
rotate either way, rotate clockwise and shift up, rotate clockwise and
shift down, and convergence. We report average success rates (%)
on all tasks, with the exception of convergence, which is reported in
degrees of the largest convergence range.

1) Primitive objectives involve single-axis object move-
ments or rotations in SE2 space, such as shifting up or
rotating counterclockwise. We consider all 6 primitive
objectives and report average success rates, defining suc-
cess based on predefined thresholds (see supplementary
material for details).

2) Complex objectives combine multiple primitive objec-
tives to parameterize a broad range of manipulation tasks.
For example, the convergence objective includes rotation
objectives with target directions and magnitudes based
on initial object orientation. Additionally, we explore
clock-up, clock-left, and rotate objectives to showcase
our approach’s flexibility in composing orthogonal or
conflicting objectives. For convergence, we report the
maximum convergence range in degrees, indicating
the broadest range of initial orientations leading to a
consistent final orientation within a small tolerance (5
degrees). Meanwhile, other complex tasks are evaluated
on success rates.

Ablations. First, removing our task-specific guidance from
our dynamics model yields the Unguided baseline, which
generates task-agnostic manipulators using our geometry dif-
fusion model. Second, removing our diffusion model yields the
Opt. baseline, which optimizes the manipulator control points
using gradients of the task objective through our dynamics
network, common for many prior works [20, 32, 34, 63]. To
mitigate performance variance due to initialization, we run
each approach 16 times per object-task pair and select the
best performance, then average among objects.

Evaluation Procedure. We evaluate each approach on held-
out objects (8 in 2D, 6 in 3D) and manipulation tasks. Each
finger Bézier representation is extruded into a 3D mesh and
mounted to a WSG50 gripper performing a fixed open-close
action. To investigate orientation robustness, we grid-sample
360 planar initial orientations and calculate average success
rates after the first open-close action for all tasks except
convergence. Observing continued object movement, we report
convergence metrics after the 40th open-close action.

Primitive Complex

up do
w

n

le
ft

ri
gh

t

cl
oc

k

co
un

te
r

ro
ta

te

cl
oc

ku
p

cl
oc

kl
ef

t

2D
Unguided 55.8 79.8 77.1 80.2 44.7 56.4 68.3 35.2 35.2

Opt. 78.6 50.3 79.2 93.8 46.1 71.4 74.3 25.0 49.0
DGDM 83.8 88.1 99.3 94.3 61.3 68.4 78.4 62.4 63.8

3D
Unguided 40.1 40.8 75.8 87.9 34.7 29.2 61.7 29.2 25.2

Opt. 42.4 66.4 77.9 86.6 40.3 39.2 67.0 22.6 34.3
DGDM 89.7 66.8 96.1 95.4 69.3 58.2 77.6 44.2 37.9

TABLE II: Multi-object Evaluation (Average success rates %).

A. Experiment Results

1) Task-specific manipulators: Despite having no task-
specific training, our dynamics and diffusion model can gen-
erate tailored fingers for a wide variety of scenarios, sur-
passing the unguided baseline (i.e., uniform control points)
across all primitive and complex tasks. The advantages of
generating custom fingers over random counterparts become
more pronounced as the design requirements escalate. For
instance, our approach exhibits a +16.6% improvement over
the unguided baseline in 2D primitive objectives, a figure that
expands to 20.0% in 2D complex objectives (see Table I).
A similar trend is observed when transitioning from 2D to
3D objects (+18.0% over Unguided in 2D, +23.4% over
Unguided in 3D, Table I) and from single-object to multi-
object designs (+18.0% over Unguided in single-obj 2D,
+18.6% over Unguided in multi-obj 2D, Table II).

In each of these scenarios, where task complexity, de-
sign space, and the target object set grow, a human expert
designer would face significantly increased time and effort.
However, our approach, leveraging the gradient aggregation
from individual motion objectives (per initial configuration,
task, and object), offers a simple yet effective solution to
handle progressively complex design requirements. As long as
users can articulate how each object should move from each
initial pose, this specification can be seamlessly incorporated
into the diffusion denoising process.

2) Robustness & efficient search with guided diffusion:
The Opt. baseline and DGDM share the same task objective
gradients from our learned dynamics network, differing only
in how this gradient information is incorporated. The baseline
uses gradient descent, a method that requires upwards of 18
and 24 minutes to converge in 2D and 3D (for 16 samples),
respectively, and is prone to local minima. In contrast, our
approach utilizes classifier-guidance with a diffusion denoising
process, which strikes a balance between exploring different
modes (by introducing Gaussian noise) and exploiting the
current mode (using the gradient of design objective) through
a guidance scaling factor (Fig. 5). This results in +12.8% and
+10.4% higher success rates than the baseline in 2D and 3D
primitive objectives, respectively. Additionally, our diffusion
models prove stable even with diffusion processes as short as
5 timesteps, translating to an average design time of 13 and
54 seconds in 2D and 3D (for 16 samples), respectively.

Shift Up Shift Left Shift Left (3D) Rotate Counter Counter (3D)Shift Down Shift Down (3D)
O

ur
s

U
ng

ui
de

d
O

pt
.

Shift Up (3D)

Fig. 4: Results on Primitive Objectives. We generate manipulators for primitive objectives that involve motion along one dimension in
SE2 space. Red and green object masks denote object configurations before and after interaction respectively, overlaid with the image after
closing in the manipulator. Compared with baseline methods, finger shapes produced by our method achieve the task much more effectively.

scale=20

...

scale=2scale=0

Fig. 5: Effect of Scaled Guidance. From left to right we increase
scaled guidance in the diffusion process. The increased scale will
enforce more task guidance and achieve higher task performance
(shifting down), however, reduce the diversity of generated designs.
By tuning this parameter, the user could trade-off between diversity
and task guidance of the candidate designs at test time.

3) Emergent design for convergence: What strategies do
our designs employ to consistently achieve convergence from a
broader range of initial orientations compared to the unguided
baseline (+21.3◦ in 2D, +8.9◦ in 3D, Table I)? From Fig. 2,
we identify two emergent design patterns not commonly
observed in the baseline algorithm:

1) Push-and-Catch: In the majority of our convergence
designs, one finger features a bulge that pushes the object
into the hollow cavity of the other finger (Fig. 6 a,b,d-
f,h). Interestingly, this cavity should roughly complement
the object’s size and shape at the convergence point, but
not precisely. We hypothesize that this extra wiggle room
(most prominent in Fig. 6 e,f) supports a broader range
of initial orientations by allowing extreme orientations to
“slide” into the optimal orientation, caught by the cavity.

2) Parallel-Align: When objects exhibit symmetric flat
edges, our designs utilize two parallel surfaces on each
finger to align these edges (Fig. 6 c,g). Here, the parallel
surfaces not only align with the object’s flat edges but
also with each other, reinforcing the object from both
sides towards the target convergence orientation.

In both of these strategies, the pair of fingers must simulta-
neously exploit object geometry (i.e., size, shape, symmetry)
and physics (sliding), coordinating their geometry to achieve
the most effective convergence. This emergent coordination
between the pair of finger designs arises from our dynamics
guidance and is not commonly observed in the baseline.

4) Specialized or generalized designs for multi-object sce-
narios: It is commonplace for automation pipelines to handle
various object types with differing geometries. In such cases,
opting for a more generic design that performs well across
all objects may be advantageous, as opposed to fabricating
one optimal design for each object. However, customizing
manipulators for multiple objects quickly becomes unwieldy,
as a gripper designed to achieve the task with one object might
cause undesirable effects on another object. For example, a
manipulator pair designed to rotate a T-shape clockwise could
inadvertently move a house- and car-shaped object up without
rotation (Fig. II, top row, ‘rotate clockwise’).

Approaching this challenge from a compositional perspec-
tive intuitively appears promising, requiring two key skills.
First, the designer must enumerate a diverse set of design
candidates that achieve the task for each object, including
designs that may not be optimal. Second, the designer must
sift through these candidates to prioritize common design
patterns effective across all objects. Ultimately, these common
elements can be composed into a unified design suitable for all
considered objects. In other words, design approaches unable
to navigate a large, multi-modal design space or filter through
a vast set of design candidates may struggle to achieve this
multi-object design scenario.

Our algorithm demonstrates the ability to discover this
compositional design intuition by effectively balancing di-
versity (§ IV-A2) with object- and task-specific performance
guidance (§ IV-A1). From Fig 7, we observe that the multi-
object fingers for “shift down” (first column) combine the

Unguided UnguidedOurs Ours

50 150!

cvrg. range cvrg. target cvrg. range cvrg. target cvrg. range cvrg. target cvrg. range cvrg. target

2D

(a) (e)

(b) (f)

3D (c) (g)

(d) (h)

92.8° 127.7° 10.0° 115.6°

Fig. 6: Convergence Results. For each pair of finger designs, we show the range of initial orientations (“cvrg. range”) which converges
to the same convergence mode (“cvrg. target”). In the generated designs (under “ours”), we observe two emergent design patterns: a bulge
on one finger pushes the object into the other finger with a hollow cavity (a,b,d-f,h), and two parallel surfaces on either finger “catch” and
align objects with symmetric flat edges (c,g). In both strategies, the pair of fingers must simultaneously exploit object geometry and physics
(sliding) and coordinate their own geometry to achieve the most effective convergence.

Shift Down

Si
ng

le
-o

bj
M

ul
ti

-o
bj

Rotate Clockwise Rotate Either Direction (3D)

Fig. 7: Specialized or Generalized Design in Multi-object Scenarios. Our approach can be flexibly conditioned on individual objects and
generate a specialized design for each object [Top] or simultaneously conditioned on multiple objects at once and generate one design for
all objects [Bottom]. This flexibility allows the user to trade-off between performance (single-object) and generality (multi-object) based on
the task and system requirements.

left finger from one design and the right finger from another
design. Meanwhile, the left multi-object finger for “rotate
clockwise” is derived from the left single-object finger for the
house. In contrast, the unguided baseline lacks task-specific
guidance, hindering its ability to guide its diverse generations
toward a common design effective for all objects. On the other
extreme, the Opt. baseline often gets stuck in a local minimum,
unable to effectively explore a multi-modal design space.
These limitations are reflected in Table II, with our approach
achieving +18.6% and +23.4% higher success rates than the
unguided baseline in 2D and 3D, respectively, and +14.7%
and +17.6% higher success rates than the Opt. baseline in 2D
and 3D, respectively.

Naturally, we acknowledge that multi-object finger designs
must sacrifice some performance compared to the single-object

scenario (−1.5% in 2D, −5.2% in 3D) to achieve more object-
level generality. This balance between generality and task-
specific performance is a fundamental trade-off in mechanism
design in automation, with the optimal compromise dependent
on the specific application. These results illustrate that designs
from our approach can vary along this spectrum without
additional training, providing a valuable tool for designers to
explore the trade-off in their design space.

5) Real-world evaluation with Sim2Real transfer: We
show real-world results of all tasks for both 2D and 3D cases
by mounting the 3D printed designs on a WSG50 (Fig. 8).
Surprisingly, our Sim2Real transfer was significantly simpli-
fied due to our sensor-less formulation - with no perception
and closed-loop control, only geometry and physics impacted
the transferability. Overall, our real-world results highlight the

Shift DownTarget Obj. Shift Right Rotate Counter Convergence

Fig. 8: Real-world Results. We manufacture manipulators generated by DGDM and execute the open-loop parallel closing motion. Behaviors
in simulation successfully transfer to the real world. Red and green masks denote object configurations before and after interaction respectively.

robustness of our designs to unmodeled plastic deformations
in simulation and manufacturing imperfections. For instance,
our convergence fingers typically achieve convergence much
faster in the real world because the lower friction coefficient
of 3D printing PLA material allows the object to slide into the
cavity more easily (§ IV-A3). These results are best viewed in
the video attached in the supplementary material.

V. CONCLUSION AND FUTURE DIRECTIONS

We present Dynamics-Guided Diffusion Model, a versatile
framework for the rapid generation of diverse and tailored
manipulator geometry designs for unseen tasks. This task-
agnostic framework lays the groundwork to enable more rapid
experimentation and future research. To expand the scope of
our work beyond geometry design, investigating co-optimizing
articulation structure, materials, and policy would unlock
broader applications. To support a better interface for users, it
is an interesting future direction to automatically detect when
different objectives conflict with each other (e.g., in multi-
object scenarios) using their gradients, and informing the user
on the feasibility of the design requirements. We hope that our
framework contributes to the wider adoption of data-driven
approaches in the domain of robotic mechanism design.

ACKNOWLEDGEMENTS

We thank Zhenjia Xu, Cheng Chi, Mandi Zhao, Zeyi Liu,
Austin Patel, Chuer Pan, Yihuai Gao, Dominik Bauer, Samir
Gadre, Mengda Xu and John So for their thoughtful discus-
sions and helpful feedback on initial drafts of the manuscript.
This work was supported in part by the NSF Award #2143601,

#2037101, and #2132519. We would like to thank Google for
the UR5 robot hardware. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the sponsors.

REFERENCES

[1] Bernardo Aceituno-Cabezas, Jose Ballester, and Alberto
Rodriguez. Certified grasping. The International Journal
of Robotics Research, 42(4-5):249–262, 2023.

[2] J Angeles and C Lopez-Cajun. The dexterity index
of serial-type robotic manipulators. ASME Trends and
Developments in Mechanisms, Machines and Robotics,
7984, 1988.

[3] Haruhiko Asada and J Granito. Kinematic and static
characterization of wrist joints and their optimal design.
In Proceedings. 1985 IEEE International Conference on
Robotics and Automation, volume 2, pages 244–250.
IEEE, 1985.

[4] Robert C Beach. An introduction to the curves and sur-
faces of computer-aided design. Van Nostrand Reinhold
Co., 1991.

[5] David N Beal, Franz S Hover, Michael S Triantafyllou,
James C Liao, and George V Lauder. Passive propulsion
in vortex wakes. Journal of Fluid Mechanics, 549:385–
402, 2006.

[6] Lionel Birglen, Thierry Laliberté, and Clément M Gos-
selin. Underactuated robotic hands, volume 40. Springer,
2007.

[7] Tianjian Chen, Zhanpeng He, and Matei Ciocarlie.
Hardware as policy: Mechanical and computational co-
optimization using deep reinforcement learning. arXiv
preprint arXiv:2008.04460, 2020.

[8] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[9] Matei Ciocarlie and Peter Allen. A design and anal-
ysis tool for underactuated compliant hands. In 2009
IEEE/RSJ International conference on intelligent robots
and systems, pages 5234–5239. IEEE, 2009.

[10] Matei Ciocarlie and Peter Allen. Data-driven optimiza-
tion for underactuated robotic hands. In 2010 IEEE
International Conference on Robotics and Automation,
pages 1292–1299. IEEE, 2010.

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

[12] Keith L Doty, Claudio Melchiorri, Eric M Schwartz,
and Claudio Bonivento. Robot manipulability. IEEE
Transactions on Robotics and Automation, 11(3):462–
468, 1995.

[13] Laura Downs, Anthony Francis, Nate Koenig, Brandon
Kinman, Ryan Hickman, Krista Reymann, Thomas B.
McHugh, and Vincent Vanhoucke. Google scanned
objects: A high-quality dataset of 3d scanned household
items, 2022. URL https://arxiv.org/abs/2204.11918.

[14] Gilbert Feng, Hongbo Zhang, Zhongyu Li, Xue Bin
Peng, Bhuvan Basireddy, Linzhu Yue, ZHITAO SONG,
Lizhi Yang, Yunhui Liu, Koushil Sreenath, and Sergey
Levine. Genloco: Generalized locomotion controllers for
quadrupedal robots. In Karen Liu, Dana Kulic, and Jeff
Ichnowski, editors, Proceedings of The 6th Conference
on Robot Learning, volume 205 of Proceedings of Ma-
chine Learning Research, pages 1893–1903. PMLR, 14–
18 Dec 2023. URL https://proceedings.mlr.press/v205/
feng23a.html.

[15] Eugene F Fichter. A stewart platform-based manipulator:
general theory and practical construction. The interna-
tional journal of robotics research, 5(2):157–182, 1986.

[16] Hetal N Fitter, Akash B Pandey, Divyang D Patel, and
Jitendra M Mistry. A review on approaches for handling
bezier curves in cad for manufacturing. Procedia Engi-
neering, 97:1155–1166, 2014.

[17] Kenneth Y Goldberg. Orienting polygonal parts without
sensors. Algorithmica, 10(2-4):201–225, 1993.

[18] Clement Gosselin and Jorge Angeles. The optimum
kinematic design of a planar three-degree-of-freedom
parallel manipulator. 1988.

[19] Clement Gosselin, Frederic Pelletier, and Thierry Lalib-
erte. An anthropomorphic underactuated robotic hand
with 15 dofs and a single actuator. In 2008 IEEE
International Conference on Robotics and Automation,
pages 749–754. IEEE, 2008.

[20] Huy Ha, Shubham Agrawal, and Shuran Song. Fit2form:
3d generative model for robot gripper form design. In
Conference on Robot Learning, pages 176–187. PMLR,
2021.

[21] Dan Hendrycks and Thomas Dietterich. Benchmarking
neural network robustness to common corruptions and
surface variations. arXiv preprint arXiv:1807.01697,
2018.

[22] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022.

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural infor-
mation processing systems, 33:6840–6851, 2020.

[24] HaoTse Hsiao, Jiefeng Sun, Haijie Zhang, and Jianguo
Zhao. A mechanically intelligent and passive gripper for
aerial perching and grasping. IEEE/ASME Transactions
on Mechatronics, 27(6):5243–5253, 2022.

[25] Jiaheng Hu, Julian Whitman, Matthew Travers, and
Howie Choset. Modular robot design optimization with
generative adversarial networks. In 2022 International
Conference on Robotics and Automation (ICRA), pages
4282–4288. IEEE, 2022.

[26] Jiaheng Hu, Julian Whitman, and Howie Choset. Glso:
Grammar-guided latent space optimization for sample-
efficient robot design automation. In Conference on
Robot Learning, pages 1321–1331. PMLR, 2023.

[27] Yuanming Hu, Jiancheng Liu, Andrew Spielberg,
Joshua B Tenenbaum, William T Freeman, Jiajun Wu,
Daniela Rus, and Wojciech Matusik. Chainqueen: A real-
time differentiable physical simulator for soft robotics. In
2019 International conference on robotics and automa-
tion (ICRA), pages 6265–6271. IEEE, 2019.

[28] Wenlong Huang, Igor Mordatch, and Deepak Pathak.
One policy to control them all: Shared modular policies
for agent-agnostic control. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 4455–
4464. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/huang20d.html.

[29] Steve C Jacobsen, John E Wood, DF Knutti, and Klaus B
Biggers. The utah/mit dextrous hand: Work in progress.
The International Journal of Robotics Research, 3(4):21–
50, 1984.

[30] Sung-Gaun Kim and Jeha Ryu. New dimensionally
homogeneous jacobian matrix formulation by three end-
effector points for optimal design of parallel manipula-
tors. IEEE Transactions on Robotics and Automation, 19
(4):731–736, 2003.

[31] Charles A Klein and Bruce E Blaho. Dexterity measures
for the design and control of kinematically redundant
manipulators. The international journal of robotics
research, 6(2):72–83, 1987.

[32] Milin Kodnongbua, Ian Good Yu Lou, Jeffrey Lipton,
and Adriana Schulz. Computational design of passive
grippers. arXiv preprint arXiv:2306.03174, 2023.

https://arxiv.org/abs/2204.11918
https://proceedings.mlr.press/v205/feng23a.html
https://proceedings.mlr.press/v205/feng23a.html
https://proceedings.mlr.press/v119/huang20d.html
https://proceedings.mlr.press/v119/huang20d.html

[33] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[34] Mengxi Li, Rika Antonova, Dorsa Sadigh, and Jean-
nette Bohg. Learning tool morphology for contact-rich
manipulation tasks with differentiable simulation. In
2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 1859–1865. IEEE, 2023.

[35] Hong Liu, Ke Wu, Peter Meusel, Nikolaus Seitz, Gerd
Hirzinger, MH Jin, YW Liu, SW Fan, T Lan, and
ZP Chen. Multisensory five-finger dexterous hand: The
dlr/hit hand ii. In 2008 IEEE/RSJ international confer-
ence on intelligent robots and systems, pages 3692–3697.
IEEE, 2008.

[36] Qiujie Lu, Nicholas Baron, Guochao Bai, and Nico-
las Rojas. Mechanical intelligence for adaptive pre-
cision grasp. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 4530–4536.
IEEE, 2021.

[37] Kevin Sebastian Luck, Heni Ben Amor, and Roberto
Calandra. Data-efficient co-adaptation of morphology
and behaviour with deep reinforcement learning. In
Conference on Robot Learning, pages 854–869. PMLR,
2020.

[38] Ou Ma and Jorge Angeles. Optimum architecture design
of platform manipulators. In Fifth International Con-
ference on Advanced Robotics’ Robots in Unstructured
Environments, pages 1130–1135. IEEE, 1991.

[39] Tad McGeer. Passive dynamic walking. The international
journal of robotics research, 9(2):62–82, 1990.

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99–
106, 2021.

[41] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pages
8162–8171. PMLR, 2021.

[42] Rolf Pfeifer and Gabriel Gómez. Morphological
computation–connecting brain, body, and environment.
Creating brain-like intelligence: From basic principles
to complex intelligent systems, pages 66–83, 2009.

[43] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. Advances in neural
information processing systems, 30, 2017.

[44] Alberto Rodriguez and Matthew T Mason. Effector
form design for 1dof planar actuation. In 2013 IEEE
International Conference on Robotics and Automation,
pages 349–356. IEEE, 2013.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and

pattern recognition, pages 10684–10695, 2022.
[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image seg-
mentation. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III 18, pages 234–241. Springer, 2015.

[47] J Kenneth Salisbury and John J Craig. Articulated hands:
Force control and kinematic issues. The International
journal of Robotics research, 1(1):4–17, 1982.

[48] Charles Schaff, David Yunis, Ayan Chakrabarti, and
Matthew R Walter. Jointly learning to construct and con-
trol agents using deep reinforcement learning. In 2019
International Conference on Robotics and Automation
(ICRA), pages 9798–9805. IEEE, 2019.

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[50] Jascha Sohl-Dickstein, Eric Weiss, Niru
Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium
thermodynamics. In International conference on
machine learning, pages 2256–2265. PMLR, 2015.

[51] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[52] Yang Song and Stefano Ermon. Improved techniques
for training score-based generative models. Advances in
neural information processing systems, 33:12438–12448,
2020.

[53] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

[54] Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du,
Wojciech Matusik, and Daniela Rus. Learning-in-the-
loop optimization: End-to-end control and co-design of
soft robots through learned deep latent representations.
Advances in Neural Information Processing Systems, 32,
2019.

[55] Leo J Stocco, Septimiu E Salcudean, and Farrokh Sas-
sani. On the use of scaling matrices for task-specific
robot design. IEEE Transactions on Robotics and Au-
tomation, 15(5):958–965, 1999.

[56] HJ Terry Suh, Max Simchowitz, Kaiqing Zhang, Tao
Pang, and Russ Tedrake. Pathologies and challenges
of using differentiable simulators in policy optimization
for contact-rich manipulation. In ICRA 2022 Workshop:
Reinforcement Learning for Contact-Rich Manipulation,
2022.

[57] Orion Taylor and Alberto Rodriguez. Optimal shape
and motion planning for dynamic planar manipulation.
Autonomous Robots, 43:327–344, 2019.

[58] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 5026–5033. IEEE, 2012. doi:
10.1109/IROS.2012.6386109.

[59] Nathan Thatcher Ulrich. Grasping with mechanical
intelligence. Technical report, 1988.

[60] Tsun-Hsuan Wang, Juntian Zheng, Pingchuan Ma, Yilun
Du, Byungchul Kim, Andrew Spielberg, Joshua Tenen-
baum, Chuang Gan, and Daniela Rus. Diffusebot: Breed-
ing soft robots with physics-augmented generative diffu-
sion models. arXiv preprint arXiv:2311.17053, 2023.

[61] Julian Whitman, Raunaq Bhirangi, Matthew Travers, and
Howie Choset. Modular robot design synthesis with
deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages
10418–10425, 2020.

[62] Adam Wolniakowski, Jimmy A Jorgensen, Konstantsin
Miatliuk, Henrik Gordon Petersen, and Norbert Kruger.
Task and context sensitive optimization of gripper design
using dynamic grasp simulation. In 2015 20th Interna-
tional Conference on Methods and Models in Automation
and Robotics (MMAR), pages 29–34. IEEE, 2015.

[63] Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Woj-
ciech Matusik, Shinjiro Sueda, and Pulkit Agrawal. An
end-to-end differentiable framework for contact-aware
robot design. arXiv preprint arXiv:2107.07501, 2021.

[64] Jie Xu, Andrew Spielberg, Allan Zhao, Daniela Rus, and
Wojciech Matusik. Multi-objective graph heuristic search
for terrestrial robot design. In 2021 IEEE international
conference on robotics and automation (ICRA), pages
9863–9869. IEEE, 2021.

[65] Tsuneo Yoshikawa. Manipulability of robotic mecha-
nisms. The international journal of Robotics Research,
4(2):3–9, 1985.

[66] Kevin Zakka. Scanned Objects MuJoCo Models,
7 2022. URL https://github.com/kevinzakka/mujoco
scanned objects.

[67] Mike Tao Zhang and Ken Goldberg. Gripper point
contacts for part alignment. IEEE Transactions on
Robotics and Automation, 18(6):902–910, 2002.

[68] Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine
Hughes, Andrew Spielberg, Daniela Rus, and Wojciech
Matusik. Robogrammar: graph grammar for terrain-
optimized robot design. ACM Transactions on Graphics
(TOG), 39(6):1–16, 2020.

[69] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

https://github.com/kevinzakka/mujoco_scanned_objects
https://github.com/kevinzakka/mujoco_scanned_objects

APPENDIX

I. TASKS AND METRICS

We provide more details about the evaluation manipulation
tasks, and introduce more metrics for each task in this section.

Primitive objectives:

• Shift up: Make the object shift upward (along the nega-
tive x-axis) under all initial poses. Metrics are the average
success rate after one closure S−x ↑ (%), average delta
translation along the x-axis after one closure ∆x ↓ (cm),
and average final x coordinate after the 40th gripper
closure x ↓ (cm). The metrics are averaged among trajec-
tories with different initial poses. The motion objective is
f (o,m, p) = −∆x(o,m, p), then the design objective can
be aggregated from f (o,m, p) as F(m)=∑o ∑p f (o,m, p).

• Shift down: Make the object shift downward (along the
positive x-axis) under all initial poses. Metrics are average
success rate S+x ↑ (%), average delta translation along the
x-axis ∆x ↑ (cm), and average final x coordinate x ↑ (cm).
The motion objective is f (o,m, p) = ∆x(o,m, p).

• Shift left: Make the object shift leftward (along the neg-
ative y-axis) under all initial poses. Metrics are average
success rate S−y ↑ (%), average delta translation along the
y-axis ∆y ↓ (cm), and average final y coordinate y ↓ (cm).
The motion objective is f (o,m, p) =−∆y(o,m, p).

• Shift right: Make the object shift rightward (along the
positive y-axis) under all initial poses. Metrics are average
success rate S+y ↑ (%), average delta translation along the
y-axis ∆y ↑ (cm), and average final y coordinate y ↑ (cm).
The motion objective is f (o,m, p) = ∆y(o,m, p).

• Rotate clockwise: Make the object rotate clockwise
(negative delta rotation around the z-axis) under all
initial poses. Metrics are average success rate S−

θ
↑ (%),

average delta rotation around the z-axis ∆θ ↓ (°), and
average final orientation θ ↓ (°). The motion objective is
f (o,m, p) =−∆θ(o,m, p).

• Rotate counterclockwise: Make the object rotate coun-
terclockwise (positive delta rotation around the z-axis)
under all initial poses. Metrics are average success rate
S+

θ
↑ (%), average delta rotation around the z-axis ∆θ ↑

(°), and average final orientation θ ↑ (°). The motion
objective is f (o,m, p) = ∆θ(o,m, p).

Complex objectives:

• Rotate: Make the object rotate either clockwise or coun-
terclockwise under all initial poses. The metrics are
average success rate S+−

θ
↑ (%), the average absolute

value of delta rotation around the z-axis |∆θ | ↓ (°), and
the average absolute value of final orientation |θ | ↓ (°).
The motion objective is f (o,m, p) = [∆θ(o,m, p)]2.

• Rotate clockwise and shift up: Make the object rotate
clockwise and shift up under all initial poses. The metrics
are average success rate S−

θ
&S−x ↑ (%), average delta rota-

tion around the z-axis ∆θ ↓ (°), average final orientation
θ ↓ (°), average delta translation along the x-axis after
one closure ∆x ↓ (cm), and average final x coordinate

after the 40th closure x ↓ (cm). The motion objective is
f (o,m, p) =−∆θ(o,m, p)−∆x(o,m, p).

• Rotate clockwise and shift left: Make the object rotate
clockwise and shift left under all initial poses. The met-
rics are average success rate S−

θ
&S−y ↑ (%), average delta

rotation around the z-axis ∆θ ↓ (°), average final orienta-
tion θ ↓ (°), average delta translation along the y-axis ∆y ↓
(cm), and average final y coordinate y ↓ (cm). The motion
objective is f (o,m, p) =−∆θ(o,m, p)−∆y(o,m, p).

• Convergence: Make the object always end in a fixed final
pose under a range of initial poses. The metric is the
maximum convergence range Rmax

c ↑ (°), the largest range
of initial orientations leading to a consistent final orien-
tation within a small tolerance. We report the maximum
convergence range within the tolerance of 3°, 5°, and 10°,
respectively.

II. ADDITIONAL RESULTS

We report results on all the tasks and metrics described
above in Tab. III, Tab. IV, Tab. V, and Tab. VI. The evaluation
procedure is the same as described in the main paper, where we
run each approach 16 times per object-task pair and select the
best performance, then average among test objects. DGDM
outperforms baselines consistently on both discrete metrics
(e.g. average success rate) and continuous metrics (e.g. delta
transformation and final transformation).

up down left right clock counter
S−x ↑ ∆x ↓ x ↓ S+x ↑ ∆x ↑ x ↑ S−y ↑ ∆y ↓ y ↓ S+y ↑ ∆y ↑ y ↑ S−

θ
↑ ∆θ ↓ θ ↓ S+

θ
↑ ∆θ ↑ θ ↑

2D
Unguided 56.8 -0.2 -1.3 82.1 0.3 1.9 82.9 -0.5 -1.2 80.4 0.5 1.4 46.9 -1.5 -9.5 58.5 2.3 11.1

Opt. 79.5 -0.4 -2.2 53.3 0.4 2.3 81.3 -0.6 -2.4 94.0 0.7 1.7 48.8 -2.9 -8.8 73.2 3.6 9.6
DGDM 88.2 -0.4 -3.1 92.0 0.5 3.7 96.7 -0.7 -2.4 97.7 0.8 2.1 60.8 -2.6 -12.3 72.0 3.6 14.2

3D
Unguided 43.0 -0.1 -0.6 43.8 0.1 1.0 80.4 -0.2 -1.2 87.9 0.2 0.9 41.2 -1.1 -4.9 33.5 0.5 2.7

Opt. 47.4 -0.1 -1.3 66.3 0.2 1.7 86.3 -0.3 -1.3 88.1 0.3 1.6 59.1 -1.9 -5.0 52.0 1.2 4.6
DGDM 81.5 -0.2 -1.6 75.1 0.2 1.7 95.1 -0.4 -1.8 97.2 0.4 1.9 69.9 -2.3 -7.7 65.0 2.2 6.3

TABLE III: Single Object Primitive Objectives Evaluation

rotate clock-up clock-left convergence
S+−

θ
↑ |∆θ | ↑ |θ | ↑ S−

θ
&S−x ↑ ∆θ ↓ θ ↓ ∆x ↓ x ↓ S−

θ
&S+y ↑ ∆θ ↓ θ ↓ ∆y ↓ y ↓ Rmax

c (3°) ↑ Rmax
c (5°) ↑ Rmax

c (10°) ↑

2D
Unguided 74.0 3.5 18.2 36.4 -1.5 -9.5 -0.2 -1.3 36.9 -1.5 -9.5 -0.5 -1.2 56.5 61.7 68.7

Opt. 78.9 4.5 18.9 29.3 -1.8 -4.2 -0.3 -1.0 49.4 -2.9 -9.0 -0.6 -2.1 69.6 73.7 82.1
DGDM 79.3 4.5 20.1 62.7 -3.3 -14.5 -0.4 -3.6 63.7 -3.2 -10.1 -0.7 -2.4 78.4 83 89.3

3D
Unguided 64.2 2.2 16.5 30.3 -1.1 -4.9 -0.1 -0.6 33.1 -0.5 -2.7 -0.2 -1.2 52.2 63.6 67.8

Opt. 66.9 2.4 15.7 29.2 -1.1 -2.7 -0.1 -0.5 37.7 -1.3 -3.3 -0.3 -1.0 50.3 60 72.3
DGDM 83.0 3.1 21.0 57.1 -2.4 -6.8 -0.2 -0.9 58.2 -2.9 -11.1 -0.5 -1.7 68.8 72.5 81.5

TABLE IV: Single Object Complex Objectives Evaluation

up down left right clock counter
S−x ↑ ∆x ↓ x ↓ S+x ↑ ∆x ↑ x ↑ S−y ↑ ∆y ↓ y ↓ S+y ↑ ∆y ↑ y ↑ S−

θ
↑ ∆θ ↓ θ ↓ S+

θ
↑ ∆θ ↑ θ ↑

2D
Unguided 55.8 -0.2 -1.3 79.8 0.3 1.3 77.1 -0.5 -1.1 80.3 0.5 1.3 44.7 -1.5 -3.5 56.4 2.1 6.2

Opt. 78.6 -0.4 -1.0 50.3 0.3 1.0 79.2 -0.6 -1.0 93.8 0.7 1.7 46.1 -2.9 -7.8 71.4 3.5 7.4
DGDM 83.8 -0.4 -3.0 88.1 0.4 3.4 99.3 -0.7 -2.5 94.3 0.7 2.1 61.3 -2.4 -10.5 68.4 3.3 16.5

3D
Unguided 40.1 -0.1 -0.5 40.8 0.1 0.9 75.8 -0.2 -0.8 87.9 0.2 0.6 34.7 -0.5 -0.8 29.2 0.1 2.5

Opt. 42.4 -0.1 -0.4 66.4 0.2 1.0 77.9 -0.2 -0.4 86.6 0.3 0.8 40.3 -1.1 -1.9 39.2 1.9 3.5
DGDM 89.7 -0.2 -1.5 66.8 0.2 1.2 96.1 -0.5 -1.8 95.4 0.4 1.3 69.3 -2.0 -5.2 58.2 1.6 3.5

TABLE V: Multi-object Primitive Objectives Evaluation

rotate clock-up clock-left
S+−

θ
↑ |∆θ | ↑ |θ | ↑ S−

θ
&S−x ↑ ∆θ ↓ θ ↓ ∆x ↓ x ↓ S−

θ
&S+y ↑ ∆θ ↓ θ ↓ ∆y ↓ y ↓

2D
Unguided 68.3 3.2 13.4 35.2 -1.5 -3.5 -0.2 -0.8 35.2 -1.0 -3.0 -0.5 -1.0

Opt. 74.3 3.8 7.2 25.0 -1.4 -0.1 -0.1 -0.2 49.0 -2.9 -4.6 -0.4 -0.7
DGDM 78.4 4.2 15.8 62.4 -3.3 -10.6 -0.4 -3.6 63.8 -3.0 -6.3 -0.7 -2.4

3D
Unguided 61.7 2.1 15.8 29.2 -0.8 -0.4 -0.1 -0.5 25.2 0.1 2.5 -0.2 -0.7

Opt. 67.0 2.3 9.5 22.6 0.1 -0.1 -0.1 -0.3 34.3 -0.9 -1.2 -0.2 -0.5
DGDM 77.6 2.5 21.6 44.2 -1.6 -7.6 -0.2 -1.2 37.9 -2.3 -8.9 -0.5 -2.3

TABLE VI: Multi-object Complex Objectives Evaluation

	Introduction
	Related work
	Manual End-effector Design
	Analytical Optimization for Automatic End-effector Design
	Data-driven Robot Hardware Design

	Approach
	Interaction Profiles as Task Specification
	Dynamics Network
	Dynamics-Guided Diffusion Model

	Evaluation
	Experiment Results
	Task-specific manipulators
	Robustness & efficient search with guided diffusion
	Emergent design for convergence
	Specialized or generalized designs for multi-object scenarios
	Real-world evaluation with Sim2Real transfer

	Conclusion and future directions
	Tasks and metrics
	additional results

